Category Archives: Reflection

你好,2017!

又是新的一年。岁月匆匆,不给人时间回头看看,就又让人上路了。

今年更新了10篇左右的博文:

  • 新增的"C语言深度"专题来源于我在嵌入式课程助教过程中发现的C语言的错误使用。我觉得C和C++是机器人领域最重要的两个语言,所以希望在这方面增加一些内容。
  • 另几篇博文是介绍新发布的树莓派3代的。今年除了树莓派3,还入手了若干树莓派Zero。因为Zero很难买到,所以一下屯了5、6个。这批Zero准备用在智能家庭的节点中,但是应用场景目前还不明确,所以没有给大家做专题介绍。

明年的工作计划:

  • 承诺的智能家庭系统还没有完全开发完成,全部完成后会找时间公布。目前已完成的部分:中心服务器的部署,NAS,多媒体中心,一个传感器节点部署好了(已经上报了半年的温湿度数据)。二氧化碳、PM2.5传感器和无线组网模块选购好了,但还没有时间调试。另一个困难是控制数据的下发和传感器数据、系统参数的展现,我想基于BS架构(Flask + socket.io / Node.js + Ajax)。我没有网页编程的基础,而且中间涉及Real-time和asynchronous的问题,所以还没有时间解决。
  • More topics on Robotics. 实验室还是以机器人为主题的,去年有点跑偏了(嵌入式系统),今年重新回归到主题上。重点我想要关注的内容点有:增强学习、概率决策、机器视觉、ROS、机器(深度)学习。
  • 博主现在长期在国外生活,关于将网站转换为全英文的想法已有很久。但是还是一直很挣扎,考虑到很多内容对国内的读者会有帮助,所以今年还是保留双语写作。

最后祝大家2017年工作、学习顺利!

近日关注的几个KickStarter项目

KickStarter是国外最著名的众筹网站。项目发起者可以在只有基本idea的情况下提前发布产品信息,以获得来自个人的资金支持,达到满意的标准后再进行产品的实际生产,从而减少了产品发售的风险。 这几天在KS上比较热门的科技项目都是智能设备/可穿戴设备,这里我聊一聊几个我最近关注的项目。

1. Sweep激光雷达

项目主页:https://www.kickstarter.com/projects/scanse/sweep-scanning-lidar/description

sweep
▲ 图1. Sweep低成本激光雷达

激光雷达是机器人常用的传感器外设,用于快速扫描、感知环境存在中的障碍物。激光雷达通过激光旋转扫射,再测量激光返回时间的方式,对周围障碍物的距离进行快速估算。传感器输出的点云数据可以进行三维建模,最终辅助机器人进行导航。目前常用的激光传感器品牌为 HOKUYO,售价在几万至几十万元。传统的激光雷达使用光学振镜进行激光扫描,通过计算激光束相位差进行距离计算。而低成本的激光雷达通过电机控制激光的发射角度,使用视觉原理进行距离估算。在牺牲了扫描速度的情况下,大幅度降低了成本。关于低成本激光雷达的设计原理,可以参照CSK兄的博文:自制低成本3D激光扫描测距仪(3D激光雷达)

sweep-demo
▲ 图2. Sweep工作在四轴飞行器上(慢速摄影)

以下是由IEEE Spectrum网站整理的Sweep与其他常见激光雷达的参数对比。Sweep的价格只有专业激光雷达的1/5,但刷新速度(Scan Rate)只有专业传感器的1/4。其检测距离精度为1cm,精度为1 - 2%,可以满足一般的机器人地图构建与导航应用。图表中的 robopeak 现改名为 SLAMTECRPLIDAR 也在最近推出了新款 RPLIAR A2,在性能上相比一代做了很大提升 (10Hz刷新率),价格和Sweep也很相似。目前Sweep的众筹已经结束,最终筹款$272,990,共有1,010个支持者。官网上可以预购,价格为$255,折合人民币1680元。

sweep-spec
▲ 图3. Sweep与其他激光雷达的参数对比

 

2. Pebble 2智能手表

项目主页:https://www.kickstarter.com/projects/597507018/pebble-2-time-2-and-core-an-entirely-new-3g-ultra

pebble_cover
▲ 图4. Pebble智能手表第二代

大名鼎鼎的智能手表先祖Pebble再次回到KickStarter。这次他们带来的是最新的两款手表产品:Pebble 2和Pebble Time 2。前者是廉价型,后者为Premium高级版本。这次新版本的Pebble相比上一代的主要改变有:

1、增加了心率传感器。现在心率传感器已经是智能手表的标配了,Pebble自然要与时俱进;
2、增加了麦克风外设,支持语音信息回复,应该还可以通过Google Voice (Android) 和Siri (iOS) 进行语音控制);
3、核心处理器从Cortex M3升级为M4,有更大的信号处理能力;
4、在增加了额外的传感器之后,防水能力从50m下降到30m,但是依然足够日常使用;
5、Pebble Time 2实际上是上一代的Pebble Time Steel,Pebble Steel这个型号可能不会再推出。

pebble
▲ 图5. Pebble 2和Pebble Time 2

pebble2_colors
▲ 图6. Pebble 2有五种可选颜色

新产品的两个版本Pebble 2和Pebble Time 2两者的主要区别有:

1、Pebble Time 2的屏幕尺寸更大 ,同时使用的是彩色e-ink屏,而Pebble 2是黑白灰度e-ink屏 (e-ink即Kindle所使用的电纸屏,功耗极低);
2、外观和材质上,Pebble Time 2更佳,Pebble 2则看上去比较廉价;
3、当然,Pebble Time 2的价格比Pebble 2多70%。

Read more »

如何做一个好的博客

我从2010年开始写博客。在过去的五年多时间里,除了自然而然增长的博文数量外,我的博文质量也在潜移默化的提高。然而这种质量的提高并不完全是自然形成的,这是需要不断思考博客的核心价值,同时在不断迭代的设计中艰难地产生的。每个人对自己的博客有一个定位,也有自己对于好博客的一套衡量标准。我从我自己以往产生的经验,来谈谈我眼中的好博客应该是什么样子的。

首先,一个好的博客需要是原创的,至少是半原创的。没有人喜欢整个网站全是复制-粘贴来的博文,这不光来自复制过程中产生的版式错误,而是这种复制的方式的本质是欠思考的、不系统的。行为上的懒惰必然导致思维上的懒惰,这样得来的文章只会显得杂乱无章,而不能体现任何博主自身的意图。可惜的是,这样的博客占了很大一部分。我想很多人也许并无意将自己的博客给别人看,而只是作为自己知识的索引。然而即使是这样,系统的整理也是必须的。这是一个吸收与理解知识的最好机会,有时甚至比文章自身带来的价值更大。

其次,是核心主题。所谓主题,就是整个博客中的博文是耦合或者是弱耦合的。制造主题的方式有很多,其中之一就是采用博文系列或专题的方式。比如云飞实验室以机器人和嵌入式为主题,也开发了热门的树莓派、Arduino和STM32等专题。正如写文章一样,博文的内容大多是围绕一个主题的。如果偏题太多,同样就会失去博客自己的特色。记住,你的博客是一个博客,而不是一个分享一切信息的网站。想要很好的做到这一点,你需要有自己假象的用户。比如对我自己而言,我的假象用户是嵌入式工程师,机器人爱好者,Makers。我每考虑创作写一篇博文,都会首先站在读者的角度去考虑。我会去判断这篇博文对读者的价值是多少?他们是否感兴趣?能不能帮助他们/引发更深层的扩展和思考?在这个过程中会有很多取舍。可能会遇到你很想发布,然而偏离主题,远离读者的博文。这是需要避免的。

再者,我就觉得是博客设计。我所说的设计,不仅包括网站的CSS版式,也包含了文章内部的组织。总体上来说,就是要做到简洁。简洁就是去除不必要的元素,避免华而不实的特效、动画、插件等。这些元素有时会破坏博客整体的平衡性,也会让读者分散精力。简洁可以给读者创造出纯净的阅读体验。而美就会略为主观了。我所理解的美,包括文章的段落结构,图片的尺寸、配色、位置,示例代码的优美性。以我的经验来看,美是需要用心才能做到的。需要让自己变得沉静,敏感,细腻。美的产生与其说是与生俱来,不如说是精雕细琢的产物。对美的感受也有进化的过程(但我觉得总体上是向正方向前进的)。很多时候,我会去看自己很久之前的博文,如果觉得做的还不够好,会再仔细修改。我也经常从别人的网站和博客中吸取经验,学习如何更好的排版、安插图片和代码等。这些需要一个人的审美层次,然而更多时候是花费时间和精力去雕琢而成的。

这些是我多年来一直在思考和遵循的原则,今日突然想与诸位分享之,便有此文。

戴晓天
2016年04月21日 于 英国约克

两轮自平衡机器人 | 研究计划

我一直对自平衡小车十分感兴趣,最早在关注Segway的时候就想玩一玩自平衡算法(当时大约还是2010年)。然而那时一无业余时间,二无设计能力,于是搁浅至今。今年5月份回国的时候,这个想法重新占上心头,于是在淘宝选够了一款评价较好的平衡车,总价不过400大洋。谁知回到英国,自己又懈怠了下来,除了偶尔拿出来当玩具玩两下,也没有仔细深入研究。这样下去自然不行,然而深入研究确实需要不少精力,只能在此痛下决心一定要把里因外果弄清楚。

虽然之前没有正式做过平衡车,然后对于这个系统还是有所了解的,其中存在的研究问题大概如下:

● 硬件设计:电机选型、电机驱动、速度反馈传感器、惯性传感器MEMS、电源、电池、MCU、通信。因为硬件设计实在繁琐,其中原理并不复杂,调试却颇费功夫,所以直接购买硬件成品;

● 系统建模:两轮自平衡的系统模型与一阶倒立摆应该是一样的。系统模型并非必须,但是通过系统模型可以了解系统特性,也可以做一些软件仿真,方便控制器的参数调节。系统的最终模型可以是s域的传递函数模型 (transfer function) 也可以是时域的状态空间模型 (state-space model);

● 传感器数据处理:主要是对惯性传感器的数据进行滤波与分析。滤波的目的是排除系统的动态扰动以及传感器的动态噪声,主要算法应该是互补滤波器 (Complementary Filter) 和卡尔曼滤波器 (Kalman Filter)。互补滤波器的算法实现较简单,而卡尔曼滤波器虽然复杂但可以和状态空间模型结合,设计性能更佳的LQG控制器;

● 控制器设计:常用的为PID控制器和状态空间下的LQR (Linear Quadratic Regulator) 或LQG (Linear-Quadratic-Gaussian) 控制器;

● 任务设计及实时性保证:整个软件有实时性要求,倾向于使用免费的FreeRTOS实时操作系统。操作系统采用静态优先级调度,优先级基于任务周期。系统中的主要任务有:传感器采集任务、传感器滤波与分析任务、控制器任务、电机转速调制任务、通信任务。

整个研究对我来说有三个目的:
1)研究运动传感器数据滤波与处理;
2)研究系统建模与控制器设计;
3)研究FreeRTOS的使用方法以及验证相关的实时性理论。

因为还未阅读相关资料,以上设计计划可能还有遗漏、错误之处,日后发现再做修正。

实时系统研究意义的思考

要想弄清研究实时系统的意义,首先必须明确实时系统在整个人类生活中的角色。

实时系统的主要研究对象是工业控制,交通和航空航天,电力及能源,网络设备及网络服务。这些系统的稳定性很大程度上决定了生命财产与经济的安全性:如电力系统的短时间崩溃会导致工业和交通停滞,并可能带来生命财产事故;航天飞行器的软件故障,会导致与地面控制中心的失联甚至是坠毁,带来巨大的财产损失。社会的正常发展和秩序很大程度上依赖于这些实时系统的稳定性和可靠性。纵使我们不想如此,人类生活的方方面面还是很大程度上依存于并不稳定的软件系统。设想如果有这样一个软件漏洞,使得多个重要系统在同一时间失控,那么其带来的社会影响和经济损失将不可估量。 实时系统的主要研究目标:保障实时系统在时间和行为上的可预测性,设立可靠的软件设计方法;就是在预防和避免以上的不可靠情况的出现。

至于在当前计算机速度已经如此之快的情况下,实时性研究是否还有其必要性。

答案我想也是肯定的。在新的计算机结构出现之前,CPU速度的提升不等同于系统实时性的提升。CPU速度的提升显然会减少程序的执行时间 (execution time),但是对于从请求产生到得出结果的响应时间 (response time) 及IO的输出间隔的稳定性 (IO jitter) 依然没有明确的保证。与此同时,更加复杂的操作系统和计算机硬件也提高了这种不确定性,例如Cache缓存和内存分页带来的运行时间浮动。综上所述,CPU速度的提升无法带来实时性上的保证,依然需要依靠实时性分析来保障系统在时间上的可预测性。

南京创客联盟沙龙活动

12月23日,我受邀参加了南京创客联盟的沙龙分享活动。本次分享活动自定主题,我就想到了之前一直很想讲但是没有机会讲的话题:创客对于大公司的影响与颠覆。一直以来,新科技与新产品都是由大公司主导的:大公司设计、生产、宣传、销售;只有在大公司成功进入市场后,小公司才会考虑复制其产品,分一杯羹。

然而在现在,创客及初创公司(start-ups)借助着新的工具:快速制造、众筹、开源硬件、互联网及移动互联网等,他们的能力实际上是被放大了。于是,现在才会出现Arduino、Pebble智能手表、Oculus Rift眼镜这些颠覆了产业的新产品。他们开拓了新技术的先河,而让大公司反过来被动的去跟进,我觉得这个非常的不容易;而且,随着基础工具和设施的完备,这种通过创客起步的初创公司我相信也会越来越多。对此,我是非常期待并且乐观的。

54997ff615523

54997ff7ee4f754997ff8f2673 54997ff9e4668

54997ffba3f8c54997ffcc3846

54997ff519e96

Started to learn Ada and Real-Time Java

Having been mainly using C/C++ in real-time systems for many years, this is my first time to seriously consider other languages which has the capability and primitives to handle concurrency and meet the requirement of hard real-time systems.

During my time looking for a research position in Real-time Systems Group at University of York, I firstly realized there is another language - Ada - which has been used in military, aerospace and industrial systems for more than three decades. It is a shame that I didn't get a chance to know its name, even I was working in industrial and automotive filed. Ada has a fruitful environment for real-time systems design and was first introduced by the US Defense. It has advanced features such as rum-time checkingparallel processing and OOP support.

To be honest, according to my previous experience with the Java language, I never expect it to be used in real-time systems. However, things are changing and there is a trend to use RTSJ (Real-Time Specification JAVA) in control and military peripheral systems (but not core systems). I think it will take a long time before RTSJ displaced the dominant position of C in embedded systems, but I think it is worthy to learn the language features that Sun and IBM are trying to change with current Java language.

What is the BEST Hardware Platform meaning to me

Last week I tried to make my new Intel Galileo running a basic 14 x 7 LED Matrix program which was working perfectly on my old Arduino UNO. This Intel powered opensource platform has a CPU frequency of 400MHz while the Arduino only got 16MHz. The interesting thing I found is, after I spent 3 hours to port the program to Galileo and executed it with full of expectation, the program turned out to work crappy: the LED matrix looked unstable and each pixel had a different luminance.

I expected the Galileo, which has 20 times more computational power, should have an brilliant performance and blows my Arduino two streets away. But the thing is, is it really appropriate to run a real time program on a Linux based platform? And is it fair enough to compare two platforms in one certain application?

The answer is NO, and this is exactly the motivation for me to write this article. During the last year, I had collected and played enormous platforms, either for using in my project or simply explore the features of a new platform. During this process, I realized that tools are just tools and there is no BEST platform exists. To make it clear, I will compare some of the platforms I got in hand and analysis their own advantages and disadvantages, and finally make a conclusion.

1. Linux Platforms

Well, apart from the aforementioned Intel Galileo, I got the popular Raspberry PI and less known pcDuino :

DSC05191_out
Figure 1. Raspberry PI Model B

DSC05195_out
Figure 2. pcDuino version 2

Generally speaking, these two platforms have a similar performance and functions: both are working at a high frequency, both running Linux operating system and all of them have some kind of GPIO extensions and USB connections. The Raspberry PI has a large community and no matter what problem you encountered, from running a program in desktop environment to compiling the Linux Kernel, you can find your answer. On the other hand, the pcDuino is not well supported and also not even well documented. So why I bought another Linux single board computer when I already got one? The answer is the additional Arduino connectivity of the pcDuino.

The pcDuino can seemless 'run' Arduino sketch locally without the need to adhere another Arduino board. Is this convenience really worth 60 pounds? Well, I think so. This design eliminates the overhead of communicating with additional hardware through serial and makes my life easier to develop more complex project where the need of hardware functions like GPIO / ADC / DAC is an essential. Apart form this aspect, I couldn't find other difference between these two platforms, and it is also for this reason that I decided to buy one more Linux platform.

2. Visual Sensors

I am pretty new to computer vision and I only started to investigate different camera since the beginning of this year. What I got so far are two normal web cameras, two PS Eye cameras for Playstation 3 and a Kinect from Microsoft:

DSC05200_out2
Figure 3. My Collection of Cameras and Visual Sensors

Among them, the Kinect is a star which is being used by hundreds of institutions and researchers in recent years. It is actually a stereo camera which can give you depth image of the scenario. What I have done so far is simply to configure the SDK and run some examples on Processing, a JAVA programming software for interactive user interface. It is a perfect sensor for robotics and can be used in applications such as V-SLAM, 3D reconstruction and manipulator as what has been done with the Boris, the newest robot invented by Birmingham University. The only thing that prohibits me from using it further, is the complex toolchain that it comes with. As first released only for XBOX 360, it is not well support by PCs and you have to use opensource packages like OpenNI and the driver from PrimeSense to make it work.

Another idea to play with stereo vision is to use a pair of monocular cameras and I found the Sony PS3 Eye is an ideal platform for me. It is cheap (8 pounds each), fast (60 fps @ 640 x 480) and fairly easy to use. You can simply buy a SDK from the company Code Laboratories and you can simply use OpenCV like what you have done with other web cameras. The adjustment and configuration of two separate cameras are tricky but it is a good idea for researchers who want to have a feeling of basic principles about stereo vision. What really interested me about this camera is it is really easy to use and can also achieve a competitive frame rate compared to these professional industry cameras. It is indeed a good platform for fast object tracking, but the thing is, it is not general and you should buy a SDK before use. So if you want to make it a product for customs, it would be problematic for the software license. So sometimes we may prefer to use off-the-shelf web cameras.

If you tried different cameras, you may find there is even difference between web cameras. I bought this HP HD2300 after I got my previous Logitech C270. Why? Simply because it has a higher and crisp resolution and it has a better white balance performance which is important for vision systems for detecting color features. But why I still keep & use the Logitech C270? Well, for CPU with limited computational power (such as the Raspberry PI), higher resolution doesn't mean higher performance but resulted in lags and failures.

3. Microcontrollers

DSC05202_out
Figure 4. Microcontrollers I got in my personal lab (AVRs)

DSC05208_out
Figure 5. Microcontrollers I got in my personal lab (Cortex-M3 / M4)

(To be continue)